\(\int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx\) [276]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 76 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=\frac {\sec ^3(e+f x)}{5 a^2 f \left (c^3-c^3 \sin (e+f x)\right )}+\frac {4 \tan (e+f x)}{5 a^2 c^3 f}+\frac {4 \tan ^3(e+f x)}{15 a^2 c^3 f} \]

[Out]

1/5*sec(f*x+e)^3/a^2/f/(c^3-c^3*sin(f*x+e))+4/5*tan(f*x+e)/a^2/c^3/f+4/15*tan(f*x+e)^3/a^2/c^3/f

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {2815, 2751, 3852} \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=\frac {4 \tan ^3(e+f x)}{15 a^2 c^3 f}+\frac {4 \tan (e+f x)}{5 a^2 c^3 f}+\frac {\sec ^3(e+f x)}{5 a^2 f \left (c^3-c^3 \sin (e+f x)\right )} \]

[In]

Int[1/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^3),x]

[Out]

Sec[e + f*x]^3/(5*a^2*f*(c^3 - c^3*Sin[e + f*x])) + (4*Tan[e + f*x])/(5*a^2*c^3*f) + (4*Tan[e + f*x]^3)/(15*a^
2*c^3*f)

Rule 2751

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sec ^4(e+f x)}{c-c \sin (e+f x)} \, dx}{a^2 c^2} \\ & = \frac {\sec ^3(e+f x)}{5 a^2 f \left (c^3-c^3 \sin (e+f x)\right )}+\frac {4 \int \sec ^4(e+f x) \, dx}{5 a^2 c^3} \\ & = \frac {\sec ^3(e+f x)}{5 a^2 f \left (c^3-c^3 \sin (e+f x)\right )}-\frac {4 \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (e+f x)\right )}{5 a^2 c^3 f} \\ & = \frac {\sec ^3(e+f x)}{5 a^2 f \left (c^3-c^3 \sin (e+f x)\right )}+\frac {4 \tan (e+f x)}{5 a^2 c^3 f}+\frac {4 \tan ^3(e+f x)}{15 a^2 c^3 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.82 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=\frac {1050 \cos (e+f x)+256 \cos (2 (e+f x))+350 \cos (3 (e+f x))+128 \cos (4 (e+f x))+768 \sin (e+f x)-350 \sin (2 (e+f x))+256 \sin (3 (e+f x))-175 \sin (4 (e+f x))}{1920 a^2 c^3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

[In]

Integrate[1/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^3),x]

[Out]

(1050*Cos[e + f*x] + 256*Cos[2*(e + f*x)] + 350*Cos[3*(e + f*x)] + 128*Cos[4*(e + f*x)] + 768*Sin[e + f*x] - 3
50*Sin[2*(e + f*x)] + 256*Sin[3*(e + f*x)] - 175*Sin[4*(e + f*x)])/(1920*a^2*c^3*f*(Cos[(e + f*x)/2] - Sin[(e
+ f*x)/2])^5*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.08 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.01

method result size
risch \(\frac {\frac {32 \,{\mathrm e}^{3 i \left (f x +e \right )}}{5}-\frac {32 i {\mathrm e}^{2 i \left (f x +e \right )}}{15}+\frac {32 \,{\mathrm e}^{i \left (f x +e \right )}}{15}-\frac {16 i}{15}}{\left ({\mathrm e}^{i \left (f x +e \right )}-i\right )^{5} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{3} f \,c^{3} a^{2}}\) \(77\)
parallelrisch \(\frac {-\frac {2}{5}+\frac {2 \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3}-\frac {10 \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3}+2 \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-2 \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {26 \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{15}-\frac {6 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{5}+\frac {14 \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5}}{f \,c^{3} a^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}\) \(129\)
derivativedivides \(\frac {-\frac {1}{6 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {1}{4 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {5}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}-\frac {2}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {1}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}-\frac {5}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {3}{2 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {11}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}}{a^{2} c^{3} f}\) \(133\)
default \(\frac {-\frac {1}{6 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {1}{4 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {5}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}-\frac {2}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {1}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}-\frac {5}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {3}{2 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {11}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}}{a^{2} c^{3} f}\) \(133\)
norman \(\frac {-\frac {10 \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a c f}-\frac {2}{5 a c f}+\frac {2 \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a c f}-\frac {2 \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a c f}-\frac {6 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{5 a c f}+\frac {14 \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5 a c f}+\frac {2 \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 a c f}-\frac {26 \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{15 a c f}}{a \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3} c^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}\) \(198\)

[In]

int(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

16/15*(6*exp(3*I*(f*x+e))-2*I*exp(2*I*(f*x+e))+2*exp(I*(f*x+e))-I)/(exp(I*(f*x+e))-I)^5/(exp(I*(f*x+e))+I)^3/f
/c^3/a^2

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.13 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=-\frac {8 \, \cos \left (f x + e\right )^{4} - 4 \, \cos \left (f x + e\right )^{2} + 4 \, {\left (2 \, \cos \left (f x + e\right )^{2} + 1\right )} \sin \left (f x + e\right ) - 1}{15 \, {\left (a^{2} c^{3} f \cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) - a^{2} c^{3} f \cos \left (f x + e\right )^{3}\right )}} \]

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

-1/15*(8*cos(f*x + e)^4 - 4*cos(f*x + e)^2 + 4*(2*cos(f*x + e)^2 + 1)*sin(f*x + e) - 1)/(a^2*c^3*f*cos(f*x + e
)^3*sin(f*x + e) - a^2*c^3*f*cos(f*x + e)^3)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1418 vs. \(2 (66) = 132\).

Time = 4.83 (sec) , antiderivative size = 1418, normalized size of antiderivative = 18.66 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**3,x)

[Out]

Piecewise((-30*tan(e/2 + f*x/2)**7/(15*a**2*c**3*f*tan(e/2 + f*x/2)**8 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**7 -
30*a**2*c**3*f*tan(e/2 + f*x/2)**6 + 90*a**2*c**3*f*tan(e/2 + f*x/2)**5 - 90*a**2*c**3*f*tan(e/2 + f*x/2)**3 +
 30*a**2*c**3*f*tan(e/2 + f*x/2)**2 + 30*a**2*c**3*f*tan(e/2 + f*x/2) - 15*a**2*c**3*f) + 30*tan(e/2 + f*x/2)*
*6/(15*a**2*c**3*f*tan(e/2 + f*x/2)**8 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**7 - 30*a**2*c**3*f*tan(e/2 + f*x/2)*
*6 + 90*a**2*c**3*f*tan(e/2 + f*x/2)**5 - 90*a**2*c**3*f*tan(e/2 + f*x/2)**3 + 30*a**2*c**3*f*tan(e/2 + f*x/2)
**2 + 30*a**2*c**3*f*tan(e/2 + f*x/2) - 15*a**2*c**3*f) + 10*tan(e/2 + f*x/2)**5/(15*a**2*c**3*f*tan(e/2 + f*x
/2)**8 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**7 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**6 + 90*a**2*c**3*f*tan(e/2 + f*
x/2)**5 - 90*a**2*c**3*f*tan(e/2 + f*x/2)**3 + 30*a**2*c**3*f*tan(e/2 + f*x/2)**2 + 30*a**2*c**3*f*tan(e/2 + f
*x/2) - 15*a**2*c**3*f) - 50*tan(e/2 + f*x/2)**4/(15*a**2*c**3*f*tan(e/2 + f*x/2)**8 - 30*a**2*c**3*f*tan(e/2
+ f*x/2)**7 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**6 + 90*a**2*c**3*f*tan(e/2 + f*x/2)**5 - 90*a**2*c**3*f*tan(e/2
 + f*x/2)**3 + 30*a**2*c**3*f*tan(e/2 + f*x/2)**2 + 30*a**2*c**3*f*tan(e/2 + f*x/2) - 15*a**2*c**3*f) - 26*tan
(e/2 + f*x/2)**3/(15*a**2*c**3*f*tan(e/2 + f*x/2)**8 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**7 - 30*a**2*c**3*f*tan
(e/2 + f*x/2)**6 + 90*a**2*c**3*f*tan(e/2 + f*x/2)**5 - 90*a**2*c**3*f*tan(e/2 + f*x/2)**3 + 30*a**2*c**3*f*ta
n(e/2 + f*x/2)**2 + 30*a**2*c**3*f*tan(e/2 + f*x/2) - 15*a**2*c**3*f) + 42*tan(e/2 + f*x/2)**2/(15*a**2*c**3*f
*tan(e/2 + f*x/2)**8 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**7 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**6 + 90*a**2*c**3*
f*tan(e/2 + f*x/2)**5 - 90*a**2*c**3*f*tan(e/2 + f*x/2)**3 + 30*a**2*c**3*f*tan(e/2 + f*x/2)**2 + 30*a**2*c**3
*f*tan(e/2 + f*x/2) - 15*a**2*c**3*f) - 18*tan(e/2 + f*x/2)/(15*a**2*c**3*f*tan(e/2 + f*x/2)**8 - 30*a**2*c**3
*f*tan(e/2 + f*x/2)**7 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**6 + 90*a**2*c**3*f*tan(e/2 + f*x/2)**5 - 90*a**2*c**
3*f*tan(e/2 + f*x/2)**3 + 30*a**2*c**3*f*tan(e/2 + f*x/2)**2 + 30*a**2*c**3*f*tan(e/2 + f*x/2) - 15*a**2*c**3*
f) - 6/(15*a**2*c**3*f*tan(e/2 + f*x/2)**8 - 30*a**2*c**3*f*tan(e/2 + f*x/2)**7 - 30*a**2*c**3*f*tan(e/2 + f*x
/2)**6 + 90*a**2*c**3*f*tan(e/2 + f*x/2)**5 - 90*a**2*c**3*f*tan(e/2 + f*x/2)**3 + 30*a**2*c**3*f*tan(e/2 + f*
x/2)**2 + 30*a**2*c**3*f*tan(e/2 + f*x/2) - 15*a**2*c**3*f), Ne(f, 0)), (x/((a*sin(e) + a)**2*(-c*sin(e) + c)*
*3), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 335 vs. \(2 (71) = 142\).

Time = 0.22 (sec) , antiderivative size = 335, normalized size of antiderivative = 4.41 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=\frac {2 \, {\left (\frac {9 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac {21 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {13 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {25 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} - \frac {5 \, \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} + \frac {15 \, \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} + 3\right )}}{15 \, {\left (a^{2} c^{3} - \frac {2 \, a^{2} c^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac {2 \, a^{2} c^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {6 \, a^{2} c^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} - \frac {6 \, a^{2} c^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {2 \, a^{2} c^{3} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} + \frac {2 \, a^{2} c^{3} \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} - \frac {a^{2} c^{3} \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}}\right )} f} \]

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

2/15*(9*sin(f*x + e)/(cos(f*x + e) + 1) - 21*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 13*sin(f*x + e)^3/(cos(f*x
+ e) + 1)^3 + 25*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 5*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 - 15*sin(f*x + e)
^6/(cos(f*x + e) + 1)^6 + 15*sin(f*x + e)^7/(cos(f*x + e) + 1)^7 + 3)/((a^2*c^3 - 2*a^2*c^3*sin(f*x + e)/(cos(
f*x + e) + 1) - 2*a^2*c^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 6*a^2*c^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3
- 6*a^2*c^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 2*a^2*c^3*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 + 2*a^2*c^3*si
n(f*x + e)^7/(cos(f*x + e) + 1)^7 - a^2*c^3*sin(f*x + e)^8/(cos(f*x + e) + 1)^8)*f)

Giac [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.64 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=-\frac {\frac {5 \, {\left (15 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 24 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 13\right )}}{a^{2} c^{3} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}} + \frac {165 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 480 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 650 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 400 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 113}{a^{2} c^{3} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{5}}}{120 \, f} \]

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^3,x, algorithm="giac")

[Out]

-1/120*(5*(15*tan(1/2*f*x + 1/2*e)^2 + 24*tan(1/2*f*x + 1/2*e) + 13)/(a^2*c^3*(tan(1/2*f*x + 1/2*e) + 1)^3) +
(165*tan(1/2*f*x + 1/2*e)^4 - 480*tan(1/2*f*x + 1/2*e)^3 + 650*tan(1/2*f*x + 1/2*e)^2 - 400*tan(1/2*f*x + 1/2*
e) + 113)/(a^2*c^3*(tan(1/2*f*x + 1/2*e) - 1)^5))/f

Mupad [B] (verification not implemented)

Time = 7.83 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.68 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^3} \, dx=-\frac {2\,\left (15\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^7-15\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6-5\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5+25\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4+13\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3-21\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+9\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+3\right )}{15\,a^2\,c^3\,f\,{\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )-1\right )}^5\,{\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+1\right )}^3} \]

[In]

int(1/((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^3),x)

[Out]

-(2*(9*tan(e/2 + (f*x)/2) - 21*tan(e/2 + (f*x)/2)^2 + 13*tan(e/2 + (f*x)/2)^3 + 25*tan(e/2 + (f*x)/2)^4 - 5*ta
n(e/2 + (f*x)/2)^5 - 15*tan(e/2 + (f*x)/2)^6 + 15*tan(e/2 + (f*x)/2)^7 + 3))/(15*a^2*c^3*f*(tan(e/2 + (f*x)/2)
 - 1)^5*(tan(e/2 + (f*x)/2) + 1)^3)